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Online marketplace designers frequently run randomized experiments to measure the impact of proposed

product changes. However, given that marketplaces are inherently connected, total average treatment effect

(TATE) estimates obtained through individual-level randomized experiments may be biased due to violations

of the stable unit treatment value assumption, a phenomenon we refer to as “interference bias.” Cluster

randomization, i.e., the practice of randomizing treatment assignment at the level of “clusters” of similar

individuals, is an established experiment design technique for countering interference bias in social networks,

but it is unclear ex ante if it will be effective in marketplace settings. In this paper, we use a meta-experiment

or “experiment over experiments” conducted on Airbnb to both provide empirical evidence of interference

bias in online marketplace settings and assess the viability of cluster randomization as a tool for reducing

interference bias in marketplace TATE estimates. Results from our meta-experiment indicate that at least

19.76% of the TATE estimate produced by an individual-randomized evaluation of the platform fee increase

we study is attributable to interference bias and eliminated through the use of cluster randomization. We

also find suggestive, non-statistically significant evidence that interference bias in seller-side experiments is

more severe in demand-constrained geographies, and that the efficacy of cluster randomization at reducing

interference bias increases with cluster quality.

Key words : Design of experiments, Electronic markets and auctions, Interference, Cluster randomization,

Airbnb

1. Introduction

Many of the world’s most highly valued and/or fastest growing technology firms (e.g., Airbnb,

Uber, Etsy) are online peer-to-peer marketplaces. These platforms create markets for many

different types of goods, including transportation, accommodations, artisanal goods, and even
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dog walking. Like almost all technology firms, online peer-to-peer marketplaces typically rely

on experimentation, or A/B testing, to measure the impact of proposed changes to the plat-

form and develop a deeper understanding of their customers. However, a randomized experi-

ment’s ability to produce an unbiased estimate of the total average treatment effect (TATE)

relies on the stable unit treatment value assumption (SUTVA) (Rubin 1974), one component

of which is the “no interference” assumption (Cox 1958). This assumption states that in any

given experiment, each unit’s outcome is a function only of their own treatment assignment,

not the treatment assignments of others.

Bias in TATE estimates due to interference, which we refer to in this paper as “interfer-

ence bias”, is likely to occur in online marketplace settings because the buyers and sellers in

marketplaces are inherently connected; different goods for sale in a marketplace are likely to

complement or substitute for one another, and sellers are likely to make strategic decisions

based on the actions of their competitors. Previous work (Blake and Coey 2014, Fradkin

2015) suggests that naive experimentation in online marketplace settings can lead to TATE

estimates that are overstated by up to 100%, and as a result, a quickly emerging body of

academic research (Liu et al. 2021, Johari et al. 2022, Bojinov et al. 2022, Bright et al. 2022,

Li et al. 2022) focuses on how to properly account for interference bias specifically in the

context of online marketplaces.1 Both researchers and academics consider this an important

problem to solve because decision-making based on experiment designs and analyses that fail

to account for interference bias can have a non-trivial and negative financial impact for online

marketplace firms.2 However, there is still limited empirical work providing insight into the

actual severity of interference bias, particularly in seller-side experiments.

Interference bias as a general phenomenon is not unique to online marketplaces, and has

been well-studied in the research literature on unipartite social networks; in such settings,

interference arises due to interactions between individuals, often referred to as peer effects

(Manski 2000, Moffitt et al. 2001). For instance, the observed behavior of one’s peers can affect

voting behavior (Bond et al. 2012), exercise habits (Aral and Nicolaides 2017), and mobility

levels (Holtz et al. 2020). One tool for reducing interference bias in social network experiments

is graph cluster randomization (GCR) (Ugander et al. 2013, Eckles et al. 2017), an experiment

design technique in which the relevant network is clustered and treatment assignment is

1A working version of our paper predates and is cited by much of this research.
2In Appendix A, we use a simple economic model to explore the potential financial ramifications of mis-

estimating price elasticities for an online marketplace intermediary.
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then randomized at the cluster-level, as opposed to the individual-level. While GCR is an

established method in the network experimentation literature, it is unclear ex ante if cluster

randomization will be an effective tool to reduce interference bias in online marketplaces.

This is largely due to factors arising from the bipartite nature of online marketplaces: the

mechanisms driving interference may be different than those in a social network setting,3 and

the appropriate mathematical model of interference in marketplaces may deviate from the

one used to model the “self-reinforcing” spillovers seen in many unipartite network settings

(i.e., positive (negative) direct effects lead to positive (negative) spillover effects).

In this paper, we use a randomized meta-experiment on Airbnb4 to simultaneously 1)

provide empirical evidence of interference bias in an online marketplace seller-side pricing

experiment and 2) propose and assess the viability of utilizing cluster randomization to reduce

interference bias in such settings. We test for interference bias in a pricing experiment in par-

ticular because pricing experiments are of special interest to online marketplace intermediaries;

experiments related to prices help firms better understand the price elasticity of their cus-

tomers, which consequently enables them to implement optimal pricing-related marketplace

mechanisms such as fee structures and seller pricing suggestions. Understanding customer

price elasticities can also be beneficial to sellers, who set their own prices. Results from our

meta-experiment indicate that cluster randomization is a viable tool for reducing interference

bias in seller-side marketplace experiments, and that interference bias would have accounted

for at least 19.76% of the “naive” TATE estimate produced by an individual-level randomized

evaluation of the treatment intervention we study.

We begin by using a pre-existing linear model of interference to explore how online market-

place interference differs from social network interference, and the implications this has for

experiment design. Interference in this model is captured by a matrix B, which we refer to as

the “interference matrix.” In order to construct an appropriate interference matrix for online

marketplace settings, it is necessary to understand the mechanism(s) that drive interference.

One possibility is that interference in online marketplaces operates via the same mechanism

as social network interference, i.e., it is driven by sellers observing each others’ actions and/or

interacting. To assess whether this is plausible, we use proprietary data from Airbnb to mea-

sure the frequency with which Airbnb hosts search in their own geographies and view the

3As a result, if an experiment designer were to try and create a “network” of sellers and perform GCR, it
is not immediately obvious how edges between sellers should be defined.

4Airbnb is an online marketplace for accomodations and experiences. More than six million listings appear
on Airbnb, and since the company’s founding in 2008, over one billion guest arrivals have occurred on the
platform (Airbnb 2019).
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product detail pages (PDP) of other listings. We find that over the course of a month, only

13.3% of listing hosts searched for specific dates in their own geographies and only 21.3%

of hosts had at least one PDP view in their own geography. These results suggest that it

is unlikely social influence is a significant contributor to interference in online marketplaces.

In contrast, a simple simulation of online marketplace dynamics that does not include any

seller behavior (see Appendix B) produces results consistent with the existence of interference,

suggesting that competitive dynamics are likely a contributor to marketplace interference. In

other words, the amount of interference between listings is at least in part determined by the

extent to which they co-occur within the consideration sets of shoppers.

Another difference between social network interference and online marketplace interference

is that in most social network settings, positive (negative) direct effects beget positive (neg-

ative) spillover effects, whereas we expect positive (negative) direct effects to create negative

(positive) spillover effects in online marketplaces. We extend a result from Eckles et al. (2017)

and show that in the presence of both same-signed and opposite-signed spillovers, cluster ran-

domization will always reduce the bias of the difference-in-means TATE estimator. In doing

so, we derive a closed form expression for the expected amount of interference bias remaining

under a given clustering; this expression is a function of interference matrix B, and can be

used to evaluate the “quality” of a given set of clusters.

Building on these insights, we present results from an in vivo meta-experiment, or “experi-

ment over randomized experiments” (Saveski et al. 2017) conducted on Airbnb. The treatment

intervention we study in this meta-experiment is a change to Airbnb’s platform fee structure;

more specifically, hosts in the treatment group were charged higher platform fees than hosts in

the control group. The meta-experiment design randomly assigned clusters of Airbnb listings

to one of two randomization schemes; 25% of clusters were randomized at the individual-level

(i.e., treatment is randomly assigned to listings at the indvidual level), whereas the remaining

75% of clusters were cluster randomized (i.e., treatment is randomly assigned to listings at the

cluster level). Using this design, we obtain separate TATE estimates in the individual-level

and cluster randomized treatment arms, and then test for a statistically significant differ-

ence between the two. Results from the individual randomized meta-treatment arm (i.e., the

“naive” experiment design) suggest that the treatment led to a statistically significant loss of

.345 bookings per listing over the course of the experiment. However, when we compare this

TATE estimate to the estimate produced by the cluster-randomized meta-treatment arm, we

find that 19.76% of the individual-level TATE estimate is eliminated by cluster randomiza-

tion and attributable to interference bias. We also find suggestive, non-statistically significant
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evidence that interference bias is more severe in demand-constrained geographies, and that

the bias reduction from cluster randomization is larger in geographies with “higher quality”

clustering.

Situating our work within the broader literature focused on interference bias in online

marketplace experiments, we provide an estimate of the potential severity of interference bias

in such settings, and evaluate the efficacy of cluster randomization at reducing said bias. We

believe there is not a one-size-fits-all solution to interference bias in marketplace experiments,

and that each proposed solution (including ours) has its strengths and weaknesses. Cluster

randomization works well in marketplaces without centralized matching (in contrast to Bright

et al. (2022)), for treatment interventions that must be randomized at the seller-level (in

contrast to Johari et al. (2022)), and in marketplaces that are susceptible to intertemporal

spillovers (in contrast to Bojinov et al. (2022)). Nonetheless, cluster randomization brings with

it substantial reductions in statistical power, and many of our theoretical results apply only

to treatment interventions that uniformly increase or decrease demand, but not a mixture of

both. We consider both of these weaknesses promising avenues for future research.

2. Related Literature

The research in this paper connects to three bodies of academic literature: one on interference

bias in online marketplace experiments, one on interference in networks, and one on pricing-

related interventions in online marketplaces.

2.1. Interference bias in online marketplace experiments

Our work is most closely related to an emerging body of research focused on the phenomenon of

interference-related estimation bias in TATE estimates when conducting experiments in online

marketplace settings. This issue was first identified by Blake and Coey (2014) and shortly

thereafter by Fradkin (2015), who both report that naive marketplace experimentation can

yield TATE estimates that are overstated by up to 100%. In the intervening years, a number

of experiment design-based solutions to this problem have been proposed (Liu et al. 2021,

Bojinov et al. 2022, Johari et al. 2022, Li et al. 2022) including “two-sided randomization”

(Johari et al. 2022) and “switchback” experimentation (Bojinov et al. 2022).5,6

5Cluster randomization was first proposed as a solution to interference bias in online marketplaces in Holtz
(2018), an unpublished master’s thesis. The main results from Holtz (2018) now appear in Appendix B of this
work.

6Analysis-based solutions to the problem have also been suggested, e.g., in Bright et al. (2022).
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While each proposed solution to marketplace interference has appealing attributes, none

of them offers a “silver bullet” solution. For instance, under two-sided randomization, both

buyers and sellers are randomly assigned at the individual-level to treatment or control, and

the treatment intervention is only delivered to buyer-seller pairs in which both the seller and

the buyer have been assigned to the treatment. Two-sided randomization is especially well-

suited to corporate experimentation settings, where existing experimentation tooling is often

built specifically with individual-randomization in mind. Johari et al. (2022) show that this

design reduces bias in TATE estimates due to interference without much loss of precision.

However, not all treatment interventions can be delivered at the buyer-seller dyad level, e.g., a

new tool for setting prices can only be delivered at the seller-level, and a new search algorithm

can only be delivered at the buyer-level. In a switchback experiment design (Bojinov et al.

2022), time is discretized and the experiment designer randomizes the treatment assignment

that is delivered to the entire marketplace at each time step. While switchback experiments

have appealing statistical properties, they can produce an inconsistent user experience for

marketplace participants, and are difficult to implement when markets do not clear quickly,

creating “carryover” or temporal spillover effects. This is the case in marketplaces such as

Airbnb, where guests often visit the site multiple times over the course of days or weeks before

making a booking.

2.2. Interference in networks

The aforementioned papers focus on solving the problem of interference bias in online market-

place experiments, which is uniquely difficult because of the bipartite nature of marketplaces.

However, the problem of estimation bias in TATE estimates arising from SUTVA violations

is well-studied in settings that are not bipartite. Researchers focused on this topic have devel-

oped statistical tests for the existence of interference (Rosenbaum 2007, Aronow 2012, Bowers

et al. 2013, Athey et al. 2018), techniques for conducting valid causal inference in the presence

of interference (Hudgens and Halloran 2008, Tchetgen and VanderWeele 2012, Aronow and

Samii 2017, Sävje et al. 2021, Chin 2018), and experiment designs that account for interfer-

ence (Sinclair et al. 2012, Imai et al. 2013, Ugander et al. 2013, Liu and Hudgens 2014, Eckles

et al. 2017, Saveski et al. 2017, Baird et al. 2018, Basse and Feller 2018, Ariel et al. 2019).

Our work is most closely related to that of Ugander et al. (2013), Eckles et al. (2017), and

Saveski et al. (2017), which all focus on experiment designs that deliver cluster-randomized

treatment to networks with the aim of obtaining less-biased TATE estimates. Ugander et al.

(2013) propose graph cluster randomization (GCR), an experiment design in which, after
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clustering a network, treatment assignment is randomized at the cluster-level. The authors

show that under certain conditions, GCR eliminates interference bias and produces unbiased

TATE estimates. Eckles et al. (2017) build on this work by showing through simulation that

in instances where the conditions outlined in Ugander et al. (2013) do not hold, GCR can

still greatly reduce interference bias, although it does not eliminate it entirely.7 Saveski et al.

(2017) conduct a “meta-experiment” on LinkedIn that compares the TATE estimate obtained

under individual-level randomization to that obtained under GCR. This paper makes two

contributions to the literature: providing a method to test for interference bias in network

settings, and reporting results that highlight the efficacy of GCR at reducing said bias.

In their totality, these papers provide a thorough exploration of GCR as a method for

reducing interference bias in network settings. However, because of the bipartite nature of

marketplaces, differences in the mechanisms driving interference, and differences in the appro-

priate way to mathematically model said interference, it is unclear ex ante if cluster random-

ization will be as effective in the marketplace setting. Thus, in this work we propose cluster

randomization as a method to reduce interference bias in marketplace experiments, and test

its efficacy using a Saveski-style meta-experiment.

2.3. Pricing-related interventions in online marketplaces

Finally, our research connects to the literature on pricing-related interventions in online mar-

ketplaces. It is important for both platform intermediaries and platform sellers to understand

the price elasticity of their customers; sellers would like to price effectively, whereas intermedi-

aries would like to implement effective fee structures (Choi and Mela 2019) and pricing-related

marketplace mechanisms. For instance, in recent years a growing number of online market-

places have launched machine-learning based pricing interventions (Ifrach et al. 2016, Dubé

and Misra 2017, Filippas et al. 2019, Ye et al. 2018). Many pricing interventions are tested

and launched using randomized experiments, however, if the TATE estimates produced by

these experiments are biased, marketplace designers may mis-estimate price elasticities and/or

launch suboptimal policies. For instance, in Appendix A, we use a simple economic model

to show that setting platform fees based on biased elasticity estimates reduces firm profits.

These losses have the potential to wipe out the positive impacts typically associated with A/B

testing (Feit and Berman 2019, Azevedo et al. 2020). Our work confirms that interference can

7One drawback of assigning treatment at the cluster-level is that most treatment effect estimators will
have less statistical power than under an individual-level randomized design. However, techniques such as
regression adjustment (Gerber and Green 2012) and pre- and post-stratification (Moore 2012, Miratrix et al.
2013) can be used in tandem with cluster randomization to mitigate the loss of statistical power.
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bias TATE estimates when conducting pricing-related experiments in online marketplaces and

establishes that cluster randomization can be an effective tool to reduce this bias.

3. Interference Bias in Online Marketplaces

Before presenting the results of our meta-experiment, we first explore the ways in which

interference bias in marketplaces differs from interference bias in social networks, and the

implications this has for experiment design. The basis for this exploration is the following

linear parametric model of interference, which is studied in, e.g., Eckles et al. (2017) and

Pouget-Abadie et al. (2018):

Yi(Z) = αi +βZi + γρi + ϵi (1)

where Yi is the outcome of seller i, Z is the treatment assignment vector, β is the “direct”

effect of the treatment, γ is the “indirect” effect of the treatment, ρi is the percentage of seller

i’s competitors/neighbors that are treated, and ϵi ∼N(0,1) is independent of ρi. The same

linear outcome model can be represented in the following way:

E[Yi(Z)] = αi +
∑
j∈V

BijZj, (2)

where Zj indicates the treatment assignment of seller j, and B is an “interference matrix”

capturing the strength of the interference between seller i and seller j.

3.1. Does “Seller Influence” Drive Interference?

The notation above makes it clear that in order to reduce interference bias through experiment

design, it is helpful to have some idea how to construct an appropriate interference matrix,

B. In other words, it is helpful to understand the mechanisms that drive interference. Here,

we investigate whether interference in online marketplaces operates via a similar mechanism

to interference in social networks, i.e., it is driven by sellers observing the behavior of other

sellers and changing their behavior in response. To do so, we reference the search and product

detail page (PDP) view activity of Airbnb listing hosts in this paper’s meta-experiment in the

month prior to the meta-experiment’s launch (February 16, 2019 to March 15, 2019). We find

that the overwhelming majority of Airbnb hosts do not search in their own geographies or view

the PDPs of competitors, suggesting that the “seller influence” mechanism is unlikely to play

a major role in driving spillovers in our context. More specifically, in the month preceding our

meta-experiment, only 22.7% of listing hosts searched at least once in their own geography,
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and only 13.3% searched at least once for specific dates in their own geography. Among hosts

who ran at least one search in their own geography, the median host searched only 8 times.

Furthermore, only 21.3% of hosts had at least one PDP view to a within-geography listing

that wasn’t their own. Among hosts that had at least one PDP view to a within-geography

listing that wasn’t their own, the median host carried out 4 PDP views across 3 distinct

listings. More detailed data on search and PDP view activity in the month preceding our

meta-experiment is shown in Figure 1. Given these results, in conjunction with the fact that

1) like our meta-experiment, many experiments run for much shorter periods of time than 30

days and 2) treatment interventions like the one we study in our meta-experiment are often

subtle and unlikely to be noticed by hosts after just a few search sessions or PDP views, we

consider it likely that interference in online marketplaces is driven not by “seller influence,”

but instead by the fact that sellers co-occur in the consideration sets of potential buyers and

compete with each other for transactions.8

3.2. Modeling Interference in Online Marketplaces

Another point of contrast between interference in online marketplaces and interference in

many social network settings is the nature of the interference between units. Many network

experiments study treatment interventions with “self-reinforcing” spillovers, i.e., treatment

interventions in which positive (negative) treatment interventions have positive (negative)

spillovers (put differently, β and γ in Equation 1 have the same sign). For instance, a vaccina-

tion encouragement intervention might increase vaccination rates not only among those that

are treated, but also among their peers. Similarly, in a social media setting we would typically

expect an intervention that increases the posting activity of treated users to also increase the

posting activity of treated users’ peers.

In contrast, many potential marketplace treatment interventions act on seller outcomes in

such a way that β and γ have opposite signs, since sellers and buyers compete with one another.

For instance, if an intervention caused treated Airbnb hosts to raise (lower) their prices, this

could lead to an decrease (increase) in demand for their listings, and, consequently, a increase

(decrease) in demand for their competitors’ listings.9 This is exactly the pattern we observe in

8The notion that spillovers in online marketplaces are driven by competitive dynamics is consistent with
the simulation results found in Appendix B.

9It is also possible that Airbnb hosts in a given geography could serve as complements to each other.
For instance, guests may describe their positive (negative) experience with a given listing to their peers,
which could increase (decrease) demand for similar listings. However, we consider it much more likely that
accommodations on Airbnb are substitutes, and assume this to be the case throughout the rest of this work.
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the fee meta-experiment results presented in Section 5. While the TATE of increasing platform

fees is negative (we estimate a TATE of -0.277 bookings per listing in the cluster-randomized

meta-treatment arm), the bias we observe points in the opposite direction (we estimate a

TATE of -0.345 bookings per listing in the individual-randomized meta-treatment arm). We

claim that this is because Airbnb customers are more likely to see a mixture of treatment and

control listings under individual-level randomization, and customers who see such a mixture

will shift their business from high-fee listings to low-fee listings.

Eckles et al. (2017) show that when β and γ have the same sign, i.e., when spillovers are

“self-reinforcing,” cluster randomization will always reduce the bias of the TATE estimator

relative to individual-level randomization. However, they stop short of proving that this is

true in cases where the direct and indirect treatment effects point in opposite directions, as is

likely to be the case in online marketplace settings. We introduce the following proposition,

which extends Theorem 2.1 from Eckles et al. (2017) and shows that cluster randomization is

guaranteed to reduce the bias of TATE estimates, even in cases where the direct and indirect

effects of a treatment intervention (captured by the interference matrix) have opposite signs.

Proposition 1. Assume we have a linear outcome model for all sellers i∈ S that is a function

of the form

E[Yi(Z)] = αi +
∑
j∈V

BijZj, (3)

where Zj indicates the treatment assignment of seller j, and B is a matrix in which all of

the diagonal entries have the same sign and all of the off-diagonal entries have the same sign.

Then for any mapping of sellers to clusters C(·), the absolute bias of the difference-in-means

TATE estimate under cluster randomization, τ̂cr, is less than or equal to the absolute bias

of the difference-in-means TATE estimate under individual-level randomization, τ̂ind, with a

fixed treatment probability p.

Proof. Given in Appendix C.

Proposition 1 establishes that cluster randomization will never increase TATE estimation bias,

but does not provide any guidance on how to construct clusters. In any given marketplace set-

ting, there will exist many different ways to cluster sellers. For instance, an experiment designer

might cluster sellers based on seller-level attributes, observed rates of seller co-occurrence

in search, or estimated cross-price elasticities, to name a few possibilities. However, not all

clusterings will be equally effective at reducing TATE estimation bias. For instance, if a given
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approach to clustering produces clusters that are essentially random, bias reduction will be

very close to 0, whereas if a given clustering does a very good job of capturing the relevant

marketplace dynamics, bias reduction has the potential to be much larger. Given this fact, it

is natural for an experiment designer to want to identify the clustering that will lead to the

greatest reduction in estimation bias.

Unfortunately, there isn’t a singular optimal method for clustering; the most effective

clustering strategy will vary depending on the specific research context and the treatment

intervention being studied. Considering this, it is necessary to develop a concept of ’cluster

quality’ that is adaptable to different contexts and takes into account the relevant interference

matrix, B, for a specific experiment. Thankfully, our proof of Proposition 1 provides a valu-

able resource. The left-hand side of the final inequality in this proof helps us quantify the bias

of the difference-in-means TATE estimator within a given clustering. This bias quantification

can be used as an indicator of the quality for a defined set of clusters, represented as C(·).

Definition 1. The quality of a given set of clusters, QC(B), is defined as

QC(B) =

∣∣∣∣∣
N∑
i=1

N∑
j=1

Bij1 (C(i) ̸=C(j))

∣∣∣∣∣ . (4)

Although in theory, Definition 1 provides a context-dependent measure of cluster quality, in

practice, the relevant interference matrix B for a given research setting and treatment inter-

vention is almost never observable to experiment designers. However, as long as the experiment

designer is able to construct some proxy matrix P that is a monotonic transformation of B,

it follows directly from Proposition 1 that QC(P ) can still be used to determine which of two

sets of clusters, C1 and C2, produces more biased difference-in-means TATE estimates.10

Proposition 2. Suppose that P is a monotonic transformation of B. Then,

QC1
(P )≤QC2

(P ) =⇒ QC1
(B)≤QC2

(B). (5)

These results suggest that 1) for seller-side marketplace interventions that uniformly

increase or decrease demand for treated sellers, cluster randomization should always reduce

interference bias, regardless of cluster quality (although bias reductions will increase with

cluster quality) and 2) after identifying a set of clusters, C(·), an experiment designer can

10Note that because B is typically not observable, the statement that a given proxy matrix P is a monotonic
transformation of B will almost always rely on a set of modeling assumptions that are not empirically testable.
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assess their quality by calculating QC(P ).11 In Section 5.4, we investigate how cluster quality

moderates the extent to which cluster randomization reduces interference bias in our meta-

experiment. The measure of cluster quality used in this analysis is calculated using a proxy

matrix P based on listing co-occurrence in searcher-level PDP view sessions. The intuition

behind this choice is that in order for two Airbnb listings to compete with one another for

bookings, they need to co-occur in searchers’ consideration sets. In Appendix F, we provide

more detail on how we calculated this particular QC(P ) using browsing data from Airbnb.

4. Platform Fee Meta-Experiment

Although the theoretical results in the previous section suggest that cluster randomization

should reduce interference bias in seller-side marketplace experiments, it is unclear if this is

true in practice. Furthermore, even if interference bias in seller-side marketplace experiments

is a theoretical concern, it may not be a practical one if the severity of interference bias is

small. If the magnitude of interference bias is small and/or cluster randomization is not an

effective bias reduction technique, cluster randomization may not be worth implementing;

cluster randomization is more logistically complicated and many industry experimentation

tools do not easily support cluster randomization.

In this section, we describe the design of an in-vivo meta-experiment conducted on Airbnb’s

platform in March 2019.12 By analyzing this meta-experiment, we obtain an empirical lower

bound on the severity of interference bias in a “naive” individual-level randomized pricing

experiment on Airbnb, and also measure the extent to which cluster randomization reduces

that bias.13

4.1. Treatment Intervention

The treatment intervention we study in our meta-experiment is a change to Airbnb’s platform

fees for guests. Airbnb’s fees for guests are visible in three different locations throughout the

booking process. First, guest platform fees are included in the total price shown to guests

11Alternatively, Pouget-Abadie et al. (2018) propose a meta-experiment design that can be used to empir-
ically compare the efficacy of different sets of clusters at reducing TATE bias.

12We roughly follow the meta-experiment design introduced by Saveski et al. (2017). Pouget-Abadie et al.
(2018) propose a similar “experiment over experiments” design. Meta-experiment designs such as these can be
thought of as special cases of the randomized saturation designs discussed in, e.g., Baird et al. (2018).

13This meta-experiment was motivated by the simulation-based work found in Appendix B. While
simulation-based work is helpful for conducting preliminary analysis, we believe that our meta-experiment
provides value above and beyond simulation based work, since any simulation-based study of interference in
marketplaces (including ours) will rely on assumptions about consumer behavior, the nature of the interference
between units, etc.
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when a listing appears in search (top panel of Figure 2). Second, if a guest opens the “price

breakdown” tooltip on any search result, they are shown a price breakdown that separates

out the nightly price and the guest platform fee (bottom panel of Figure 2). Finally, when

viewing a listing’s PDP, a detailed pricing breakdown (including fees) is displayed next to the

“Request to Book” button (Figure 3).

Our meta-experiment targeted long-tenured listings (i.e., listings that had been listed on

Airbnb as of a certain cutoff date). Listings in the treatment had their guest fees increased

relative to the status quo, whereas listings in the control had their fees decreased relative to

the status quo. Less-tenured listings (i.e., listings created after the cutoff date) did not have

their fees changed relative to the status quo.14,15

4.2. Experiment Design

Our meta-experiment design is extremely similar to the “experiment over experiments” design

described in Saveski et al. (2017). First, Airbnb listings were sorted into clusters using the

process described in Section 4.2.1. Clusters were then randomly assigned to one of two meta-

treatment arms: individual-level randomization (25% of clusters), or cluster randomization

(75% of clusters). Within the individual-level randomized meta-treatment arm, treatment was

randomly assigned to listings at the individual level. Within the cluster-randomized meta-

treatment arm, treatment was randomly assigned to listings at the cluster level. The entire

meta-experiment design is summarized in Figure 4.

Each meta-treatment arm can be analyzed as a standalone experiment that produces a

TATE estimate, and then, by jointly analyzing the data from both meta-treatment arms, we

are able to measure whether there is a statistically significant difference between these two

estimates. In order to increase statistical power for this comparison, we arranged our clusters

into strata and use post-stratification (Miratrix et al. 2013) when analyzing our data. The

process we used to generate those strata is described in Section 4.2.3.

4.2.1. Generating Hierarchical Listing Clusters The first step in the design of our

meta-experiment was arranging listings into clusters. There are many different ways to sort

14Due to our NDA with Airbnb, we are unable to disclose the exact magnitude of the fee changes in this
experiment, nor are we able to disclose the cutoff date used to determine whether listings were long-tenured.
Furthermore, all of our outcome variables (bookings, nights booked, gross guest spend) are multiplied by a
random constant.

15Because our meta-experiment only impacts fees for long-tenured listings, we restrict our analysis dataset
to long-tenured listings. However, the clusters used in our experiment include all listings, regardless of tenure
on the platform.
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listings into clusters (e.g., the simulation described in Appendix B takes a graph clustering

approach to generating clusters: edges were drawn between listings that share observable

traits, and the resulting graph was clustered using Louvain clustering (Blondel et al. 2008)).

For our in-vivo meta-experiment, we took an approach to clustering that made use of technical

infrastructure that already existed at Airbnb. The first step in the process of generating these

clusters was generating a dense, 16-dimensional demand embedding for each listing. Listings

were then arranged into hierarchical clusters based on their location in that 16-dimensional

space. Finally, a maximum cluster size was chosen in order to determine which subset of the

hierarchical clusters to use in our meta-experiment.16

We generated demand embeddings for each Airbnb listing using a process similar to the

one described in Grbovic and Cheng (2018). The training data used to generate our demand

embeddings consisted of sequences of listings that individual users viewed in the same search

session. If, for instance, a user viewed listings LA, LB, and LC in one search session, this

would generate the sequence:

<LA,LB,LC > . (6)

We used a word2vec-like architecture (Mikolov et al. 2013b) to estimate a skip-gram model

(Mikolov et al. 2013a) on this data. Given S sequences of listings, the skip-gram model

attempts to maximize the objective function

J =maxW,V

∑
s∈S

1

|s|

|s|∑
i=1

∑
−k≤j≤k, k ̸=0

log p (Li+j|Li) , (7)

where k is the size of a fixed moving window over the listings in a session, W and V are

weight matrices in the word2vec architecture, and p(Li+j|Li) is the hierarchical Softmax

approximation to the regular softmax expression. The objective function above was augmented

by including listing-level attributes (e.g., a listing’s geography) in the search session sequences.

The model was then trained using a geography-level negative sampling approach.

Once listing embeddings were generated using the aforementioned approach, a recursive

partitioning tree (Kang et al. 2016) was used to arrange the Airbnb listings into hierarchical

16We believe that providing guidance on cluster construction is beyond the scope of this paper, given that
the “optimal” set of clusters for cluster randomization will vary depending on the research setting and the
treatment intervention of interest. However, the cluster quality metric provided in Definition 1 can be a useful
tool for adjudicating between two candidate sets of clusters. We also believe that the analyses and theoretical
results in this paper provide a roadmap of sorts that other researchers can draw on when designing clusters
for the purpose of a cluster-randomized marketplace experiment. We discuss this point further in Section 6.
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clusters. The algorithm starts from a single cluster containing all listings, and then recursively

bisects clusters into two sub-clusters. The algorithm stops bisecting sub-clusters when the tree

reaches a depth of 20, or when a new sub-cluster will contain less than 20 listings. Listings

can then be assigned to clusters of arbitrary maximum size by applying a cut to the hierarchy

of clusters generated by the recursive partitioning tree. Figure 5 depicts example clusters

generated using this method in the San Francisco Bay Area. Using an ad-hoc approach, we

chose a cluster size threshold of 1,000 for the fee meta-experiment. This ad-hoc approach is

described in Appendix D.

4.2.2. Treatment assignment randomization Once each Airbnb listing was assigned

to a cluster, 75% of clusters were randomly assigned to the “meta-treatment” (cluster random-

ization) and 25% of clusters were randomly assigned to the “meta-control” (individual-level

randomization). Within the meta-control arm, Bernoulli individual-level randomization was

used to assign 50% of listings to the treatment and 50% of listings to the control. Within the

meta-treatment arm, Bernoulli cluster randomization was used to assign 50% of clusters to

the treatment and 50% of clusters to the control. Each listing in a meta-treatment cluster was

assigned the treatment assignment corresponding to its cluster.

4.2.3. Strata for post-stratification In our meta-experiment analysis, we use post-

stratification (Miratrix et al. 2013) to increase statistical power. The strata we use for this

purpose were generated using a multivariate blocking procedure (Moore 2012). As a first step,

we collected pre-treatment listing-level data for the period running from January 16, 2019

to February 17, 2019. Across this period, we calculated cluster-level summary statistics: the

average number of nights booked per listing, the average number of bookings per listing, the

average gross guest spend per listing, and the number of non-experimental holdout listings in

the cluster.17 After centering and scaling each of these metrics, we calculated the Mahalanobis

distance (Mahalanobis 1936) between each pair of clusters. Finally, we used an optimal-greedy

algorithm to arrange clusters into strata of maximum size n= 8.

4.3. Experiment Preliminaries

The meta-experiment was run from March 16, 2019 to March 21, 2019 on a sample of 2,602,782

listings.18 Of those listings, 647,377 were assigned to the listing-randomized meta-control

17At the time of our meta-experiment, experiments on Airbnb excluded listings in a long-term experiment
holdout group, as well as listing in Airbnb’s “Plus” tier.

18Shortly after the meta-experiment’s conclusion, a “reversal experiment” was run from April 15, 2019 to
April 22, 2019. In the reversal experiment, listings that had been assigned the treatment condition in the
meta-experiment were assigned the control, and vice-versa. The purpose of the reversal experiment was to
mitigate any potential negative impact of the meta-experiment on Airbnb hosts.
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arm, and the remaining 1,955,405 were assigned to the cluster-randomized meta-treatment

arm. Within the listing-randomized meta-treatment arm, 323,734 listings were assigned to the

control and 323,643 listings were assigned to the treatment. Within the cluster-randomized

meta-treatment arm, 2,981 clusters were assigned to the treatment and 2,979 clusters were

assigned to the control, resulting in 979,015 listings assigned to the treatment and 976,390

listings assigned to the control. In total, across both meta-treatment arms, 1,300,124 listings

were assigned to the control and 1,302,568 listings were assigned to the treatment. We check

for balance on pre-treatment outcome variables between the meta-treatment and meta-control

clusters, and between the control and treatment groups in both meta-treatment arms (see

Table 1); we do not detect any statistically significant differences, indicating our randomization

procedure was sound.

5. Results

In this section, we present results from the fee meta-experiment. We focus on a single outcome

metric, bookings, but the results for two alternative outcome metrics, nights booked and gross

guest spend, are qualitatively similar and can be found in Appendix E. Since relative to the

control, the treatment increased fees, we expect the TATE on bookings to be negative.

We first present the results from separately analyzing the individual-level randomized and

cluster randomized arms of the meta-experiment. While the individual-level randomized arm

will have ample statistical power, we expect its TATE estimate to suffer from interference

bias. On the other hand, analysis of the cluster randomized arm should provide a less biased

estimate of the TATE, since the amount of marketplace interference will be reduced, but will

also have less statistical power. Simply comparing the point estimates obtained independently

from the two meta-treatment arms is not sufficient to rigorously measure interference bias. In

order to do so, we proceed to jointly analyze both the individual-level randomized and cluster

randomized meta-treatment arms. Finally, we investigate the extent to which our results vary

as a function of 1) the level of supply- or demand-constrainedness in an Airbnb marketplace

and 2) the geography-level quality of our clusters.

5.1. Individual-level & Cluster Randomized Results

We analyze both the individual-level randomized and cluster randomized meta-treatment

arms separately by estimating the following model on listing-level data,

Yi = α+βTi +
∑
l

γl1(Bi = l)+ δXi + ϵi (8)



Holtz et al.: Reducing Interference Bias in Online Marketplace Experiments using Cluster Randomization
17

where Yi is the number of bookings, Ti is the treatment assignment for listing i, Bi is a

variable indicating which stratum listing i’s cluster of belongs to, Xi is a vector consisting of

listing i’s pre-treatment bookings, nights booked, gross guest spend, calendar nights available,

and geography-level number of searches per available night in the month prior to the meta-

experiment, and ϵi is an error term. For the cluster-randomized meta-treatment arm, we

cluster standard errors at the Airbnb listing cluster-level.19

Table 2 shows the TATE estimate for bookings in both the individual-level randomized

(column 1) and cluster randomized (column 2) meta-treatment arms. In the individual-level

randomized meta-treatment arm, the TATE is -0.345 bookings per listing, whereas in the

cluster randomized meta-treatment arm, the TATE is -0.277 bookings per listing. Both of

these TATE estimates are statistically significant at the 95% confidence level.

5.2. Joint Analysis

In order to determine whether the difference between the TATE estimates generated by the

two meta-treatment arms is statistically significant, we estimate the model

Yi = α+(β+ νMi)Ti + ξMi +
∑
l

γl1(Bi = l)+ δXi + ϵi, (9)

where Yi is the outcome of interest, Mi is a binary variable set to 1 when listing i is in the

individual-level meta-treatment arm and 0 when i is in the cluster-randomized meta-treatment

arm, Ti is a binary variable set to 1 when listing i is exposed to the treatment, Bi is a variable

indicating the stratum of clusters to which listing i belongs, Xi is a vector consisting of listing

i’s pre-treatment variables, and ϵi is the error term. Standard errors are clustered at the

individual-level for listings in the individual-level randomized meta-treatment arm, and at the

Airbnb listing cluster-level for listings in the cluster-randomized meta-treatment arm.20

In the above model, β measures the “true” effect of the treatment, and ν measures the

difference between the estimated effect of the treatment in the individual-level randomized

arm and the estimated effect of the treatment in the cluster randomized arm. In other words,

ν should measure the extent to which cluster randomization reduces interference bias, and also

19In order to increase statistical power, our preferred model specification is Equation 8, which utilizes post-
stratification (Miratrix et al. 2013) through the inclusion of stratum-level indicators. Results obtained from
estimating a more straightforward model that regresses bookings only on treatment assignment can be found
in Table H.7.

20In order to increase statistical power, our preferred model specification is Equation 9, which utilizes
post-stratification (Miratrix et al. 2013) through the inclusion of stratum-level indicators. Results obtained
from estimating a more straightforward model that regresses bookings only on meta-treatment assignment,
treatment assignment, and their interaction can be found in Table H.8.
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provide a lower bound on the amount of interference bias in the individual-level randomized

meta-treatment arm.21 ξ measures any baseline difference between listings in the individual-

level randomized arm of the meta-experiment and listings in the cluster-randomized arm of the

meta-experiment; since clusters were randomly assigned to meta-treatment arms, we expect

ξ to be zero. Once we have estimated Equation 9, our estimate of the interference bias is

Ω=
ν̂

ν̂+ β̂
, (10)

i.e., the percentage of the listing-randomized meta-treatment arm TATE estimate that does

not appear in the cluster-randomized meta-treatment arm TATE estimate. We calculate stan-

dard errors on this quantity using the delta method (we use the deltamethod function in the

R library msm).

Column 1 of Table 3 and Figure 6 show the results from estimating Equation 9 on our

entire sample. We estimate that the “true” TATE is -0.277 bookings per listing, whereas -0.068

bookings per listing of the TATE measured in the listing-randomized meta-treatment arm is

due to interference bias. Plugging these point estimates into Equation 10, we estimate that

19.76% (±9.06%) of the TATE estimate achieved through the individual-level randomized

experiment is due to interference bias, and was eliminated through cluster randomization.

5.3. The Moderating Effect of Supply and Demand Constrainedness

We hypothesize that the extent to which the TATE estimate under listing-level randomization

suffers from interference bias will depend on marketplace conditions. More specifically, we

expect that interference bias will be larger in geographies that are demand constrained, and

smaller in geographies that are supply constrained. The intuition for this is as follows: in

an extremely supply-constrained geography, all listings will eventually get booked, which will

push the interference bias to zero, whereas in an extremely demand-constrained geography,

only “more appealing” listings (i.e., only those in the treatment or control, depending on

the treatment intervention) will be booked, maximizing interference bias. Simulation-based

evidence motivating this hypothesis can also be found in Johari et al. (2022).

To test this hypothesis, we re-estimate Equation 9 separately for listings that are

above/below the median listing in terms of the supply-constrainedness of their geography. Our

measure of “supply constrainedness” is relatively crude, but effective: we divide the number

21Recall that even when using cluster randomization, TATE estimates will likely remain biased to some
extent, since any given clustering will do an imperfect job of capturing every pair of listings that interfere with
one another.
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of searches occurring in a given geography in the month prior to our meta-experiment by

the number of calendar nights available in the geography at the outset of the month prior to

our experiment. Columns 2 and 3 of Table 3 display our results for supply-constrained and

demand-constrained geographies, respectively; these results are also visualized in Figure 7.

We estimate that 12.05% (±11.55%) of the listing-level randomized TATE estimate in supply-

constrained geographies can be attributed to interference bias, whereas 28.65% (±14.91%)

of the listing-level randomized TATE estimate in demand-constrained geographies can be

attributed to interference bias. While these results are consistent with both our hypothesis

and the results reported in Johari et al. (2022), the difference between these two point esti-

mates is not statistically significant (see Column 1 of Table H.9), and hence these results

should only be considered suggestive.

5.4. The Moderating Effect of Cluster Quality

We also hypothesize that geographies with higher quality clusters (as defined in Definition

1) should see a greater reduction in interference bias. Using a process described in Appendix

F, we construct a geography-level measure of cluster quality. Under this measure, which uses

a proxy for the “true” interference matrix B based on user-level PDP view sessions, a given

clustering is considered “higher quality” if listings tend to co-occur with listings from the

same cluster in user-level PDP view sessions. We proceed to split listings into those that

are above or below the median listing in terms of geography-level clustering quality, and

separately estimate Equation 9 on these two samples. Columns 4 and 5 of Table 3 display our

results for low-quality and high-quality clustering, respectively; these results are also visualized

in Figure 7. We find that clustering reduces the TATE estimate by 25.92% (±15.14%) in

geographies with high-quality clusters, and reduces the TATE estimate by 14.98% (±11.69%)

in geographies with low-quality clusters. As was the case for our heterogeneity analysis with

respect to supply-constrainedness, although these results are consistent with our hypothesis,

we consider them suggestive since the difference between these two estimates of interference

bias reduction is not statistically significant (see Column 2 of Table H.9).22

22We conduct the same analysis with an alternate definition of cluster quality that is based on observable
listing attributes, as opposed to consumer search data. To construct this alternative measure, we classify two
listings as “substitutable” if they are in the same geography-level decile for the following three variables: share
of 5 stars trips, person capacity, and price. At the geography-level, we then calculate the average percentage of
a listing’s “substitutable” listings (including itself) that are in the same cluster. Table H.10 shows our results
using this alternative cluster quality measure; they are qualitatively similar to those found in Table 3.
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6. Discussion

In this paper, we have highlighted the ways in which interference bias in online market-

places differs from interference bias in social networks, and presented results from an in vivo

meta-experiment conducted on Airbnb. Results from this meta-experiment provide empiri-

cal evidence that interference has the potential to cause substantial statistical bias in online

marketplace seller-side experiment TATE estimates, and establish that cluster randomization

is a promising tool for reducing said bias. More specifically, we find that at least 19.76% of

the TATE estimate obtained from our individual-randomized meta-treatment arm was due to

interference bias. We also find suggestive, non-statistically significant evidence that interfer-

ence bias is more severe in demand-constrained geographies, and that higher-quality clusters

lead to greater bias reduction in TATE estimates.

While our results show that there can be a sizable amount of interference bias in online

marketplace experiments, it is possible that different treatment interventions in different mar-

ketplaces would be less (or more) prone to estimation bias. Although we are unable to make

evidence-based claims on this topic, we believe that the analyses described in this paper

provide something of a roadmap for researchers and firms hoping to assess the potential sever-

ity of interference bias in their setting and/or use cluster randomization to mitigate it. For

instance, researchers might begin by estimating the potential financial impact of interference

bias in their setting (Appendix A), conducting observational analysis to better understand

the potential mechanisms driving interference in their setting (Section 3.1) and/or running

simulated experiments (Appendix B).

When interference bias seems worth accounting for, an appropriate next step would be to

weigh the pros and cons of cluster randomization relative to other proposed solutions such as

two-sided randomization (Johari et al. 2022) and switchback experimentation (Bojinov et al.

2022). In general, both two-sided randomization and switchback experimentation will reduce

TATE estimation bias relative to the individual-level randomized baseline. The extent to which

this bias reduction comes at the price of reduced statistical power depends on the amount of

supply-demand imbalance (in the case of two-sided randomization) or the strength of temporal

“carryover” effects (in the case of switchback experimentation). There are also some treatment

interventions for which switchback experimentation and/or two-sided randomization may not

be viable (for instance, data-driven decision-making aids cannot be assigned at the buyer-

seller dyad level, as is required for two-sided randomization). Beyond relying on domain

knowledge and intuition, managers and researchers may find it informative to run simulated
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experiments that make reasonable assumptions about, e.g., the strength of carryover effects or

the types of sellers that might interfere with one another, and compare the bias and statistical

power of different experiment designs and treatment effect estimators in these simulations.

As previously mentioned, relative to alternatives, our belief is that cluster randomization is

well-suited to seller-side interventions that are susceptible to intertemporal spillovers.

In cases that are best suited to cluster randomization, researchers can consider many differ-

ent sets of clusters and either calculate and compare the “quality” of said clusters (Appendix

F) or conduct a meta-experiment using the design described in Pouget-Abadie et al. (2018)

to identify which clustering will provide the greatest bias reduction. Having chosen a set of

clusters, one can imagine either running a straightforward cluster randomized experiment to

obtain a TATE estimate, or conducting a meta-experiment similar to ours (Section 4.2) to

obtain a lower-bound on the actual amount of interference bias present.

We believe our work leaves open multiple promising avenues for future research, the most

pressing of them being the development of methods to increase the statistical power of cluster-

randomized experiments in online marketplaces. Even in cases where cluster randomization is

well-suited to the treatment intervention under evaluation, one major barrier to the adoption

of cluster randomization in online marketplaces is the fact that clustering greatly reduces

the precision of TATE estimates. Loss of statistical power due to clustering can also make

it difficult to estimate the severity of interference bias. This is evidenced by the fact that

the confidence interval around our interference bias estimate is still quite wide, despite our

meta-experiment including over 2 million Airbnb listings.23 Future work might focus on, e.g.,

using meta-experiments to estimate underlying structural parameters of marketplaces (such

as price elasticities), and subsequently using those structural parameter estimates to optimize

the design of future experiments and/or predict the amount of interference bias associated

with other potential treatment interventions.

We believe our work leaves open multiple promising avenues for future research, the most

pressing of them being the development of methods to increase the statistical power of cluster-

randomized experiments in online marketplaces. Even in cases where cluster randomization is

well-suited to the treatment intervention under evaluation, one major barrier to the adoption

of cluster randomization in online marketplaces is the fact that clustering greatly reduces

23To further emphasize this point, let us provide an explanatory anecdote: prior to the meta-experiment
reported in this paper, we conducted a different pricing-related meta-experiment on Airbnb with a less intense
treatment intervention. Because the treatment intervention was less extreme, this meta-experiment was under-
powered to detect interference bias, despite having a sample size in the millions.



Holtz et al.: Reducing Interference Bias in Online Marketplace Experiments using Cluster Randomization
22

the precision of TATE estimates. Loss of statistical power due to clustering can also make

it difficult to estimate the severity of interference bias. This is evidenced by the fact that

the confidence interval around our interference bias estimate is still quite wide, despite our

meta-experiment including over 2 million Airbnb listings.24 Future work might focus on, e.g.,

using meta-experiments to estimate underlying structural parameters of marketplaces (such

as price elasticities), and subsequently using those structural parameter estimates to optimize

the design of future experiments and/or predict the amount of interference bias associated

with other potential treatment interventions.

Furthermore, the results we present in Section 3.2 are somewhat specific to treatment

interventions that lead to uniform increases/decreases in demand. However, many treatment

interventions of interest, including algorithmic pricing interventions (Ifrach et al. 2016, Dubé

and Misra 2017, Filippas et al. 2019, Ye et al. 2018) increase demand for some sellers while

decreasing demand for others. Future research might explore theoretical guarantees around

cluster randomization in marketplaces when treatment interventions are more complicated

than those considered in this paper and/or conduct meta-experiments similar to ours to assess

the efficacy of cluster randomization when the treatment intervention under evaluation is

more complex.

24To further emphasize this point, let us provide an explanatory anecdote: prior to the meta-experiment
reported in this paper, we conducted a different pricing-related meta-experiment on Airbnb with a less intense
treatment intervention. Because the treatment intervention was less extreme, this meta-experiment was under-
powered to detect interference bias, despite having a sample size in the millions.
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7. Figures

Figure 1 Panel A shows the distribution of product detail page (PDP) views to within-geography listings,

whereas Panel B shows the distribution of unique within-geography listings with at least one PDP view. Panel

C shows the distribution of within-geography searches, whereas Panel D shows the distribution of

within-geography searches with dates. Searches with dates are generally considered to be higher intent to book.
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Figure 2 The top panel shows a typical search result on Airbnb. In this case, the guest platform fee is

included in the total price of $508. The bottom panel shows what is displayed to guests after clicking the “price

breakdown” tooltip: the guest platform fee (listed here as a service fee of $58) is broken out from the total

nightly price.
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Figure 3 The section of the Airbnb product detail page that provides a full pricing breakdown for would-be

guests. In this pricing breakdown, the guest platform fee (listed here as a service fee) is $58.
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Figure 4 This figure depicts the experiment design process. We use listing-level co-occurrence in search (a)

in order to learn “demand embeddings” (b). A hierarchical clustering algorithm is then applied to those

embeddings in order to generate clusters (c). Clusters are randomly assigned to meta-treatment or

meta-control (d); within meta-control, treatment is assigned at the individual-listing level, whereas in

meta-treatment, treatment is assigned at the cluster-level (e). We arrange clusters into strata after treatment

assignment to facilitate post-stratification (Miratrix et al. 2013).
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Figure 5 These maps illustrate clusters generated using the hierarchical clustering scheme described in this

paper. Image from Srinivasan (2018).

Figure 6 Coefficient estimates for the joint analysis of the fee meta-experiment. Error bars represent 95%

confidence intervals. The dotted blue line correponds to a treatment effect of 0 bookings per listing. The red

shaded area corresponds to values that are below the MDE (80% power, 95% confidence).
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Figure 7 This graph visualizes the reduction in interference bias from cluster randomization that we estimate

across different samples: overall, listings in supply-constrained geographies, listings in demand-constrained

geographies, listings in geographies with low-quality clusters, and listings in high-quality clusters.
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8. Tables

Table 1 This table tests for statistically significant differences in pre-treatment outcomes between treatment

and control in the individual-level randomized meta-treatment arm, treatment and control in the

cluster-randomized meta-treatment arm, and meta-treatment and meta-control. Each comparison uses a

two-sided t-test. Analysis is conducted at the individual-level within the meta-control arm, and at the

cluster-level within the meta-treatment arm and when comparing the two meta-treatment arms.
Individual-randomized Cluster-randomized Meta-experiment

Control Treatment p-value Control Treatment p-value Meta-control Meta-treatment p-value

Pre-treatment statistics

Bookings 11.864 11.882 0.78 11.760 11.572 0.49 11.790 11.666 0.65
(26.275) (26.174) (10.559) (10.256) (10.664) (10.408)

Nights Booked 44.984 44.953 0.90 43.288 42.497 0.37 43.195 42.893 0.73
(101.570) (102.677) (34.339) (33.646) (34.517) (33.994)

Gross Guest Spend 5,920.370 5,934.694 0.72 5,554.392 5,399.833 0.37 5,587.642 5,477.087 0.53
(15,751.420) (15,824.250) (6,764.090) (6,412.172) (6,953.921) (6,590.321)

Nindividuals 323,734 323,643
Nclusters 2,979 2,981 1,987 5,960
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Table 2 This table reports the TATE results obtained by analyzing the two meta-treatment arms separately.

Individual-level randomized results are found in Column (1), and cluster randomized results are found in

Column (2).

Dependent variable: Bookings
Individual-level randomized Cluster randomized

(1) (2)
Treatment −0.345∗∗∗ −0.277∗∗∗

(0.013) (0.012)

Pre-treatment bookings 0.174∗∗∗ 0.175∗∗∗

(0.001) (0.001)

Pre-treatment nights booked −0.003∗∗∗ −0.003∗∗∗

(0.000) (0.000)

Pre-treatment gross guest spend −0.000∗∗∗ −0.000∗∗∗

(0.000) (0.000)

Pre-treatment nights available 0.002∗∗∗ 0.001∗∗∗

(0.000) (0.000)

Pre-treatment searches/night 0.267∗∗∗ 0.033∗∗

(0.027) (0.015)

Stratum F.E. Yes Yes
Robust s.e. Yes Yes
Clustered s.e. No Yes
R2 0.408 0.405
Adjusted R2 0.407 0.405

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 3 This table summarizes the meta-experiment results for number of bookings. Column (1) presents

the overall results. Columns (2) and (3) explore heterogeneity with respect to supply/demand-constrainedness.

Columns (4) and (5) explore heterogeneity with respect to to cluster quality.

Dependent variable:

Bookings
Overall Supply constrained Demand constrained Low-quality clusters High-quality clusters

(1) (2) (3) (4) (5)

Treatment −0.277∗∗∗ −0.433∗∗∗ −0.140∗∗∗ −0.360∗∗∗ −0.196∗∗∗

(0.012) (0.022) (0.011) (0.019) (0.016)

Individual-level Randomized 0.021 0.019 0.013 0.021 0.015
(0.014) (0.025) (0.014) (0.022) (0.018)

Individual-level Randomized × Treatment −0.068∗∗∗ −0.059∗ −0.056∗∗∗ −0.063∗∗ −0.069∗∗∗

(0.018) (0.031) (0.018) (0.027) (0.023)

Pre-treatment bookings 0.175∗∗∗ 0.174∗∗∗ 0.175∗∗∗ 0.172∗∗∗ 0.178∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001)

Pre-treatment nights booked −0.003∗∗∗ −0.003∗∗∗ −0.003∗∗∗ −0.003∗∗∗ −0.003∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)

Pre-treatment gross guest spend −0.000∗∗∗ −0.000∗∗∗ −0.000∗∗∗ −0.000∗∗∗ −0.000∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)

Pre-treatment nights available 0.001∗∗∗ 0.003∗∗∗ 0.000∗∗∗ 0.002∗∗∗ 0.001∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)

Pre-treatment searches/night 0.050∗∗ 0.021∗∗ 0.775∗∗∗ 0.203∗∗∗ 0.028∗∗

(0.020) (0.010) (0.062) (0.024) (0.013)

Interference bias estimate 19.76% 12.05% 28.65% 14.98% 25.92%
(± 9.06%) (± 11.55%) (± 14.91%) (± 11.69%) (± 15.14%)

Stratum F.E. Yes Yes Yes Yes Yes
Robust s.e. Yes Yes Yes Yes Yes
Semi-clustered s.e. Yes Yes Yes Yes Yes
R2 0.405 0.404 0.365 0.408 0.402
Adjusted R2 0.405 0.404 0.364 0.407 0.402

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Appendix A: The impact of interference bias on platform profit

In this appendix, we use a toy model to quantify the potential profit loss associated with interference

bias.25 In the model, a firm chooses a price to maximize profits given a fixed demand curve. The

demand function depends on the output elasticity with respect to price, which is ex-ante unknown by

the firm. Pricing experiments like the one presented in this paper are one tool available to firms in

order to pin down the demand elasticity of consumers. If the firm estimates the wrong elasticity due

to interference bias, then the firm’s optimization procedure will lead to suboptimal profit.

To be more concrete: Define P as price and Q as quantity. In this context it is important to

differentiate the actual demand elasticity from the estimated one, which can suffer from interference

bias. Denote the latter as the observed elasticity (η′). Assume the demand function is iso-elastic,

Q = P−η, and the cost function is linear with a slope 1 for simplicity: Q. The profit is defined as

a function of P : π(P ) = PQ − Q. The firm equates marginal cost and marginal benefit based on

their assessment of demand elasticity η′, which does not align with η in the presence of interference.

Therefore the price chosen is such that:

(1− η′)P η′
= ηP−η′−1 ⇒ P =

(
η′

η′ − 1

)
.

Based on this choice of price, the quantity is defined based on the real (unobserved) elasticity η that

drives demand,

Q=

(
η′

η′ − 1

)−η

.

Therefore, the firm’s profit is given by,

π(η′|η) =

(
η′

η′ − 1

)1−η

−

(
η′

η′ − 1

)−η

. (11)

We define b as the elasticity bias (b = η′−η

η
). We can restate the profit as a function of the true

elasticity and the bias:

π(b, η) =

(
η(b+1)

η(b+1)− 1

)1−η

−

(
η(b+1)

η(b+1)− 1

)−η

. (12)

In our setting, the parameter η could be estimated using a cluster-randomized experiment, the param-

eter η′ could be estimated using an individual-level randomized experiment, and the bias b could be

estimated by taking the difference of the two. Finally, to assess the loss due to interference bias we

could calculate:

25The inclusion of this toy model in our paper does not imply or suggest that Airbnb sets guest fees or
make any other platform design choices to maximize profits.
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∆(b|η) = π(b|η)−π(0|η)
π(0|η)

. (13)

Due to our NDA, we cannot reveal Airbnb’s estimated demand elasticity. However, Figure G.1 shows

the profit loss of a hypothetical firm for a particular estimated demand elasticity given different levels

of bias.26 We can see that the profit loss is increasing in the size of the bias, and occurs both for under-

and over-estimates of the actual demand elasticity (η). As expected, profit is maximized when bias is

zero.

26Recall that we estimate that interference bias accounts for at least 19.76% of naive TATE estimates for
pricing applications on Airbnb.
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Appendix B: Interference Simulation

In this section, we design a simulation of booking behavior for one calendar night in a single Airbnb

geography (Miami). We use this simulation framework to determine whether individual-level random-

ization yields biased TATE estimates, and perform a preliminary investigation into the viability of

cluster randomization at reducing that bias.

B.1. Data & Network Construction

Our simulation framework is built on top of a dataset scraped by Slee (2015), which describes all

of the Airbnb listings in and around Miami as of February 13, 2016. This dataset details the room

type, number of reviews, average “overall satisfaction” rating, guest capacity, number of bedrooms,

number of bathrooms, price per night (USD), minimum length of stay, latitude, and longitude of 8,855

Airbnb listings. Figure G.2 depicts the geospatial distribution of the listings by room type, and Table

H.1 provides information about the distribution of listing-level covariates across the sample of Airbnb

listings.

Before using the dataset for our analyses, we impute missing values in a number of fields: missing

guest capacity, bedroom, and bathroom values are imputed using the modal value for each variable.

Minimum length of stay values are capped at 30, and missing minimum length of stay values are

imputed using the modal value for minimum length of stay. Missing overall satisfaction values are

imputed using the mean value of non-empty entries. We also assign each listing j in our dataset an

unobservable quality component,

ξj ∼N(0,1), (14)

which is kept constant across all simulations. This unobserved quality component is observable to

searchers, but not observable to the search algorithm or the platform. Depending on the quality of

a given platform’s data, factors that contribute to a listing’s unobservable quality might include the

quality of its photos, the responsiveness of the seller, and/or the text content of the listing’s reviews

We proceed to build a “product network” for listings in this dataset. Each listing in the dataset

constitutes a node in the network, and an edge between two listings implies that the listings are likely

to substitute for one another when searchers are making purchase decisions. We generate an edge

between two listings when the following three criteria are satisfied:27

1. The listings are within 1 mile of each other

2. The listings have the same room type

3. The difference between the guest capacity of the two listings is not greater than 1 in absolute

magnitude

27One could imagine using a subset of these criteria (e.g., all listings within 1 mile of each other are
substitutes), or a totally unrelated criteria (e.g., listings must have co-occurred in search more than x times).
For instance, in the main body of this paper and in Srinivasan (2018), items in an online marketplace are
clustered based on how often they co-occur in search results.
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Using the edge heuristic described above, we produce a network that has 1,538,637 edges, and a

clustering coefficient of 0.74. The average degree of nodes in the network is 173.76.

In order to simulate cluster randomized experiments, we need to divide this network into clusters.

We do so using the Louvain clustering algorithm (Blondel et al. 2008). Louvain clustering attempts

to maximize modularity, which is defined as

Q=
1

2E

∑
ij

(
Aij −

didj

2E

)
1(Ci =Cj), (15)

where E is the total number of edges in the graph, Aij is a {0,1} variable that indicates whether or

not an edge exists between nodes i and j; di and dj are the degrees of nodes i and j, respectively, and

1(Ci =Cj) is an indicator function that is equal to 1 only when i and j belong to the same cluster. At

a high level, Louvain clustering attempts to maximize the density of links inside communities relative

to links between communities. After running the algorithm on our listing network, the network is

partitioned into 169 clusters, which have an average size of 52.40 listings.

As noted in the main body of this paper, cluster randomization can increase the variance of TATE

estimates. In order to counteract this increase in variance, our simulated cluster randomization exper-

iments use block random assignment, with blocks of size b= 2, to assign cluster-level treatment. To

arrange clusters into pairs that will be used in that block random assignment procedure, we first

calculate the average number of reviews, the average overall satisfaction score, the average number

of beds, the average number of bathrooms, the average minimum stay, the average latitude, the aver-

age longitude, the percentage of private room listings, and the percentage of shared rooms for each

cluster. After concatenating these metrics into a vector representing each cluster, we calculate the

Mahalanobis distance (Mahalanobis 1936) between every possible pair of clusters, and select pairs of

clusters using a greedy algorithm that attempts to minimize the sum of the Mahalanobis distances

between each chosen pair.

B.2. Simulation Process

In order to estimate the true TATE under different treatment interventions, as well as the bias and

sampling variance of the TATE estimator under different experiment designs and analysis approaches,

we create a framework for simulating the Airbnb booking process for one calendar night. Each set of

simulated outcomes is generated using the following procedure.

First, a “search algorithm,” δ, is drawn, with each element of δ being generated by first drawing

from the uniform distribution over the interval [0,1] and then normalizing so that the sum of the

elements of δ is one, i.e.,

δk0 ∼U [0,1] for k= 1,2,3, ...,9,

δk =
δk0∑
j
δk0

.
(16)
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The nine elements of δ correspond to the weight that the algorithm puts on normalized versions of the

following listing-level attributes: number of reviews, average satisfaction score, number of bedrooms,

number of bathrooms, minimum stay, price, whether the listing is for an entire home/apt, whether

the listing is for a private room, and whether a listing is a shared room. The “search algorithm” can

then determine a “score” for each listing by taking the inner product of δ and xj, the full vector of

the listing i’s centered and scaled attributes, i.e.,

Search Scorej = δ ·xj . (17)

Conditional on being issued a query by a searcher with certain geographic or attribute constraints, the

algorithm will return to the searcher the ten unbooked listings with the highest search score. In cases

where ten listings meeting the searcher’s criteria are not available, the algorithm will return all of the

listings satisfying the searcher’s criteria. This allows for the possibility that the algorithm returns no

listings if there are none that satisfy the searcher’s requirements.

Then, nsearchers “searchers” sequentially arrive at Airbnb and look for an available listing in our

marketplace, i.e., Miami. Each searcher randomly draws a region of interest in latitude/longitude space.

The locations of the box edges are drawn with uniform probability from the interval spanning from

the .25th percentile of the latitudes (longitudes) belonging to listings in the geography to the 99.75th

percentile of latitudes (longitudes) belonging to listings in the geography.28 The searcher also draws a

minimum guest capacity from a uniform distribution over {1,2,3,4}. The geographic boundaries and

minimum guest capacity constitute the searcher’s “query,” and only listings that satisfy the searcher’s

geographic and capacity requirements will be returned by the search algorithm.

Searcher i’s utility from booking listing j is given by the following equation, which is chosen so that

our simulation framework is comparable to models used in the demand estimation literature (e.g.,

Berry et al. (1995) and Nevo (2000)):

uij = αi(yi − pj)+ x̃jβi + ξj + ϵij , (18)

where x̃j is the vector of listing j’s attributes besides price, and

yi ∼N(0,1)

αi ∼N(0,1)

βik ∼N(0,1)∀k

ϵij ∼f(x) = e−xee
−x

(the Type I extreme-value distribution).

(19)

Searcher i uses the above utility function to determine which of the up to 10 listings provided by

the search algorithm they would like to book. If none of the listings have a utility greater than 0

28This is done to account for the potential that there are listings in our dataset that are geographic outliers.
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(representing the outside option), or if the search algorithm does not return any listings meeting the

searcher’s query parameters, the searcher chooses not to book and exits the marketplace. Otherwise,

the searcher “books” the listing that provides the highest utility to them. After this point, that listing

cannot appear in future searchers’ consideration sets.

Although this simulation framework simplifies the marketplace dynamics of a platform like Airbnb,

we believe it can still provide insight into the degree to which interference may bias TATE estimates

in online marketplace experiments, and can help determine the extent to which cluster randomization

reduces that bias. We conduct simulations of marketplace activity both under marketplace-wide policy

regimes (i.e., 100% treatment and 100% control), as well as under different experiment designs. We

then compare the ground truth TATEs generated by contrasting outcomes under marketplace-wide

policy changes to the TATE estimates produced by different experiment designs, and calculate the

bias and root mean square error (RMSE) of the TATE estimates produced under different approaches

to experiment design. In each of our simulations of marketplace activity, we are interested in two

different outcomes. The first is whether or not a listing was booked. The second is the amount of

revenue earned by a listing. We also consider two different types of treatment intervention. The first

is a price reduction of .75 standard deviations for treated listings. The second is an increase of .75

standard deviations in the unobserved quality of listings.

B.3. Simulating Ground Truth

We first use our simulation framework to simulate the distribution of marketplace-level average out-

comes in the case in which 100% of listings receive the treatment, and the case in which 100% of

listings receive the control. For the control, as well as both the price reduction treatment and the

unobserved listing quality treatment, we conduct 500 simulations of one night of booking activity in

which 1,000 searchers visit Airbnb. Figure G.3 compares the sampling distributions of the rate of

listings being booked and the average listing revenue under all three conditions.

A two-sided t-test between the distribution of booking rates under the control and the distribution

of booking rates under the price reduction treatment yields a t-statistic of t= 17.27 (p≤ 2.2×10−16),

with an average TATE of 0.002, whereas a two-sided t-test between the distribution of average listing

revenue under the control and the distribution of average listing revenue under the price reduction

treatment yields a t-statistic of t= 1.63 (p= 0.10), i.e., at the 95% level, we are unable to reject the

null hypothesis that the average TATE is equal to zero. This pair of results is somewhat intuitive:

when sellers lower prices, the rate at which listings are booked increases, because a greater share of

listings dominate the outside option. However, that increase in booking rate does not translate into

an increase in revenue, since those listings are being booked at a lower price.

A two-sided t-test between the distribution of booking rates under the control and the distribution

of booking rates under the unobserved listing quality treatment yields a t-statistics of t= 21.63 (p≤

2.2× 10−16), with an average TATE of 0.003, whereas a two-sided t test between the distribution of
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average listing revenue under the control and the distribution of average listing revenue under the

unobserved listing quality change treatment yields a t-statistic of 2.17 (p = 0.03), with an average

TATE of 0.612. This pair of results is also intuitive: when the unobservable quality of listings increases,

the rate at which listings are booked increases, again because a greater share of listings dominate the

outside option. Because this increase in booking rate does not come hand in hand with a reduction in

price, this increase in booking rate translates into an increase in revenue.

B.4. Measuring bias and RMSE

Having simulated the distribution of marketplace-level outcomes under both 100% treatment and 100%

control for both our price reduction treatment and our unobservable listing quality treatment, we can

now use our simulation framework to estimate the bias and RMSE of different experiment designs for

both treatments. We first use our framework to simulate 500 individual-level randomized experiments,

in which treatment effects are estimated using a difference in means treatment effect estimator, and

then use the simulation framework to simulate 500 blocked cluster randomized experiments. Under

this design, we calculate the difference in means estimator and also estimate the treatment effect using

a linear regression with clustered standard errors.

Table H.2 shows the bias and RMSE of each experiment design for the booking outcome, under

both the price reduction treatment and the unobserved listing quality treatments. Table H.3 shows

the same information for the listing revenue outcome under both treatments. Relative to the difference

in means estimator under the individual-level randomized experiment, we find that the difference in

means estimator under blocked cluster randomization reduced bias by as much as 64.5%, across both

metrics and both types of treatment. However, this came at the cost of increasing RMSE by as much

as 204%. In other words, although the TATE estimates are on average closer to the ground truth

TATE, the variance of the distribution of those estimates is much higher, i.e., statistical power is much

lower.

B.5. Statistical Inference

In addition to measuring the true bias and RMSE of different experiment designs, we also assess the

coverage probability associated with the 95% confidence interval that each of these approaches yields.

For our difference in means estimators, we calculate the variance of the treatment effect estimate using

the following expression,

σ̂2
τ = σ2(YiT )+σ2(YiC), (20)

where σ2(YiT ) and σ2(YiC) are the variance of outcomes in the treatment group and control group,

respectively. We also calculate the variance of the blocked cluster randomized TATE estimate when

analyzed with a linear model that clusters standard errors at the level of the cluster. This approach

to analyzing the data better takes into account the design of the experiment, and should lead to 95%

confidence intervals with a coverage probability closer to the nominal level.
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The coverage probabilities corresponding to our 95% confidence intervals are found in the rightmost

columns of Tables H.2 and H.3. We find that the coverage probability of the difference in means

estimator when used with the individual-level randomized design is below the nominal 95% coverage

in all cases, and can be as low as 6%. The blocked cluster randomized design, when used in conjunction

with the difference in means estimator, tends to move the coverage probability closer to the nominal

coverage probability for the price reduction treatment, but negatively impacts the coverage probability

for the unobserved quality change treatment. Regression analysis of the blocked GCR design with

clustered standard errors produces coverage probabilities that are greater than the nominal 95%

coverage probability, ranging from 95% to 100%.
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Appendix C: Proof of Proposition 1

Proof. Under independent randomization,

τ̂ind =
1

N

N∑
i=1

(E[Yi|zi = 1]−E[Yi|zi = 0])

=
1

N

N∑
i=1

([Bii + p
∑
j ̸=i

Bij ]− [p
∑
j ̸=1

Bij ])

=

N∑
i=1

Bii.

(21)

Under cluster randomization,

τ̂cr =
1

N

N∑
i=1

(E [Yi|zi = 1]−E[Yi|zi = 0])

=
1

N

N∑
i=1

([Bii +
∑
i ̸=j

C(j)=C(i)

Bij + p
∑
j ̸=i

C(j)̸=C(i)

Bij ]− p
∑
j ̸=1

C(j)̸=C(i)

Bij)

=
1

N

N∑
i=1

([Bii +
∑
i ̸=j

C(j)=C(i)

Bij ])

=
1

N

N∑
i=1

N∑
j=1

Bij1[C(i) =C(j)].

(22)

If the bias of the treatment effect under graph cluster randomization is less than the bias under

independent randomization, then |τ(1,0)− τ̂cr| ≤ |τ(1,0)− τ̂ind|, which implies that

1

N

∣∣∣∣∣
N∑

i=1

N∑
j=1

Bij −
N∑

i=1

N∑
j=1

Bij1 (C(i) =C(j))

∣∣∣∣∣≤ 1

N

∣∣∣∣∣
N∑

i=1

N∑
j=1

Bij −
N∑

i=1

Bii

∣∣∣∣∣ . (23)

This expression can be simplified to∣∣∣∣∣
N∑

i=1

N∑
j=1

Bij1 (C(i) ̸=C(j))

∣∣∣∣∣≤
∣∣∣∣∣

N∑
i=1

N∑
j=1

Bij1(i ̸= j)

∣∣∣∣∣ . (24)

Since the set of sellers not equal to i is a superset of the sellers not in the same cluster as i, and since

all of the off-diagonal elements of B have the same sign, this will always hold true. □
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Appendix D: Determining Cluster Size

Previously attempted pricing meta-experiments at Airbnb had used clusters of minimum size 250, so

this was considered the “status quo” cluster size. We also decided based on statistical power consid-

erations that a cluster size threshold of 1,000 was the maximum feasible threshold. Given these facts,

the choice of cluster size threshold became a direct comparison between a minimum size of 250 and

a minimum size of 1,000. In choosing a cluster size threshold, the fundamental trade-off is between

statistical power and capturing Airbnb demand. While smaller clusters yield more statistical power

(since there are more of them), they will also do a poorer job of capturing demand, since a given

user search session is more likely to contain listings from many different clusters. As a consequence,

cluster quality and bias reduction will both be lower. On the other hand, larger clusters will provide

less statistical power, but will do a better job of capturing demand and reducing bias. Power analysis

suggested that without taking into account differences in cluster quality, our fee meta-experiment

would have a minimum detectable effect (MDE) for interference bias that was 1.17 times as large if

clusters of minimum size 1,000 were used as opposed to clusters of size 250. In order to determine

whether this degradation in “ideal” MDE was worthwhile, we needed to measure differences in the

extent to which the two sets of clusters captured demand on the platform.29,30

In order to make a principled decision between the two different minimum cluster sizes, we assumed

that the “ideal” MDEs obtained via our power calculations would be reduced due to poor demand

capture according to the relationship below:

MDEactual =
MDEideal

Demand capture
. (25)

In other words, as a given set of clusters’ demand capture moved closer to 1, the MDE would approach

the ideal MDE. Given this assumed relationship between actual MDE, ideal MDE, and demand

capture, we determined that the 1,000 listing threshold clusters would be preferable to the 250 listing

threshold clusters if

Demand capture1,000
Demand capture250

>
MDEideal250

MDEideal1,000

→
Demand capture1,000
Demand capture250

> 1.17 (26)

Table H.4 shows the ratio of demand capture for clusters with a threshold of 1,000 listings to the

demand capture for clusters with a threshold of 250 clusters according to five different demand capture

29The analysis we describe below was originally conducted using data and clusters from February 2019,
however, we present analyses using clusters generated on January 5, 2020, PDP views occurring between
January 5, 2020 and January 12, 2020, and bookings occurring between January 5, 2020 and January 26, 2020.
The results we report and the corresponding conclusions are qualitatively similar to those obtained using 2019
data.

30The meta-experiment design process occurred prior to the creation of the cluster quality metric introduced
in Definition 1. Moving forward, we would recommend others use the cluster quality metric found elsewhere
in this paper, as opposed to any of the demand capture metrics described below.
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measures calculated across one week of PDP views: the average share of PDPs belonging to a given

cluster, the average user-level PDP Herfindahl-Hirschman index across clusters, and the percentage of

users for which one cluster accounts for at least 67%, 75%, and 90% of listings viewed. Across all five

of these demand capture metrics, and across different user subpopulations, the demand capture ratio

is consistently above 1.17. Based on this calculation, we determined that clusters with a size threshold

of 1,000 listings were preferable to those with a size threshold of 250.
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Appendix E: Interference bias for nights booked and gross guest spend

In this appendix, we present the results of our analyses for two additional outcomes: nights booked

per listing and gross guest spend per listing. Qualitatively, our results for nights booked per listing

and gross guest spend per listing are extremely similar to our results for bookings per listing.

Table H.5 shows the estimated effect of the fee treatment in both the individual-level randomized

meta-treatment arm and the cluster randomized meta-treatment arm on both nights booked per listing

and gross guest spend per listing. We estimate in the individual-level randomized meta-treatment arm

that the treatment led to a statistically significant loss of 0.308 nights booked per listing and $29.92

in gross guest spend per listing, whereas we estimate in the cluster randomized meta-treatment arm

that the treatment led to a statistically significant loss of 0.257 nights booked per listing and $26.56

in booking value per listing.

In order to test whether or not there is a statistically significant difference between the TATE

estimates in the two meta-treatment arms, we conduct a joint analysis of both meta-treatment arms

simultaneously. Our results are displayed in Table H.6 and Figure G.4. We find statistically significant

evidence of interference bias in the individual-level randomized TATE estimate for nights booked

per listing, but do not find statistically significant evidence of interference bias in the individual-

level randomized TATE estimate for gross guest spend per listing. Our point estimates suggest that

interference accounts for 15.26% of the Bernoulli TATE estimate for nights booked per listing (stat

sig.) and 9.98% of the Bernoulli TATE estimate for gross guest spend per listing (not stat. sig).
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Appendix F: Estimating cluster quality using browsing data

In this appendix, we describe the process used to estimate a geography-level version of the “cluster

quality” metric found in Definition 1 for our clusters. In Section 5.4, we use this metric to estimate

heterogeneity in the amount of interference bias with respect to geography-level cluster quality.

Because this paper focuses on pricing-related interventions, the “true” interference matrix B that we

wish to construct in order to assess cluster quality is likely the matrix of listing cross-price elasticities.

Unfortunately, the full set of cross-price elasticities on Airbnb is extremely difficult, if not impossible

to estimate. However, given that cross-price elasticities are at least partially driven by co-occurrence

in searchers’ consideration sets, we argue that search or PDP view data can be used to construct an

appropriate proxy matrix for a pricing experiment on Airbnb.

In place of constructing a full proxy matrix, we use a procedure similar to the one described by

Rolnick et al. (2019) to calculate the quality score QC(P ) for a given set of clusters by “folding” the

underlying bipartite graph between searchers and/or PDP viewers and clusters. More specifically, let

sik be the number of search impressions or PDP views by searcher i to listings in cluster Ck. We

calculate the normalized folded edge between clusters k and k′:

Fkk′ =
∑
i

siksik′√∑
i
sik
∑

i
sik′
√∑

k
sik
∑

k
sik

. (27)

It follows that QC(P ), i.e., the total edge weight not captured by the clustering C consisting of M

clusters is

QC(P ) =
1

M

∑
k

(1−Fkk) , (28)

where the normalization factor of M ensures that the maximum value of QC(P ) is 1. This expression

for cluster quality is higher when listings from cluster k tend to co-occur in search or PDP view

sessions with other listings in cluster k, and will be maximized when listings in cluster k only co-occur

in search or PDP view sessions with other listings in cluster k.

For computational tractability, we choose to construct our proxy matrix using PDP views, as

opposed to search impressions. However, we expect that the proxy matrices constructed using these

two datasets would be extremely similar.
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Appendix G: Additional Figures

Figure G.1 This figure plots the impact of interference bias on firm profits. The figure shows that profit is

maximized when the bias does not exist. Losses increase with interference bias, and this is true for positive and

negative bias.
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Figure G.2 The geospatial distribution of Airbnb listings in and around Miami. Color corresponds to listing

type. This figure was produced with ggmap (Kahle and Wickham 2013).
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Figure G.3 Comparison of simulated marketplace-wide average outcomes when either 0% or 100% of

listings are assigned treatment. The top row shows distributions when the treatment is the price reduction

treatment. The bottom row shows distributions when the treatment is the unobserved listing quality change

treatment. The left column shows distributions for the listing booked outcome. The right column shows

distributions for the listing revenue outcome.
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Figure G.4 Coefficient estimates for the joint analysis of the fee meta-experiment (nights booked per listing

and gross guest spend per listing). Error bars represent 95% confidence intervals. The dotted blue line

corresponds to a treatment effect of 0. The red shaded area corresponds to values that are below the MDE

(80% power, 95% confidence).
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Appendix H: Additional Tables

Table H.1 Summary of Airbnb listing covariates for interference simulation

N Mean St. Dev. Min Pctl(25) Pctl(75) Max

Private room 8,855 0.233 0.423 0 0 0 1
Shared room 8,855 0.026 0.158 0 0 0 1
Entire home/apt 8,855 0.742 0.438 0 0 1 1
Reviews 8,855 11.397 22.366 0 0 12 304
Overall satisfaction 6,433 4.588 0.539 1.000 4.500 5.000 5.000
Capacity 6,629 3.060 1.152 1.000 2.000 4.000 8.000
Beds 8,843 1.399 1.028 0.000 1.000 2.000 10.000
Baths 7,922 1.370 0.695 0.000 1.000 2.000 8.000
Price (USD) 8,855 226.016 406.892 15 89 249 10,000
Min Stay 8,418 3.293 9.309 1.000 1.000 3.000 365.000
Lat. 8,855 25.808 0.072 25.443 25.773 25.844 25.974
Lon. 8,855 −80.176 0.070 −80.505 −80.193 −80.129 −80.110

Table H.2 Simulated performance comparison: outcome = bookings

Treatment Design Estimator Bias RMSE Coverage

Price Reduction Individual-level randomization Difference in means 0.0354 0.0393 6%
Price Reduction Cluster randomization Difference in means 0.0248 0.0459 20%
Price Reduction Cluster randomization Regression + clustered S.E. 0.0248 0.0459 95%
Unobserved quality Individual-level randomization Difference in means 0.0110 0.0125 56%
Unobserved quality Cluster randomization Difference in means 0.0039 0.0381 23%
Unobserved quality Cluster randomization Regression + clustered S.E. 0.0039 0.0381 99%

Table H.3 Simulated performance comparison: outcome = listing revenue

Treatment Design Estimator Bias RMSE Coverage

Price Reduction Individual-level randomization Difference in means 6.08 7.26 40%
Price Reduction Cluster randomization Difference in means 4.30 9.06 47%
Price Reduction Cluster randomization Regression + clustered S.E. 4.30 9.06 97%
Unobserved quality Individual-level randomization Difference in means 2.26 3.93 86%
Unobserved quality Cluster randomization Difference in means 0.73 7.76 49%
Unobserved quality Cluster randomization Regression + clustered S.E. 0.73 7.76 100%
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Table H.4 The ratio of demand capture for 1,000 listing threshold clusters and 250 listing threshold clusters,

using different demand capture metrics and user subpopulations.

Single views? Type of viewers avg. cluster share avg. HHI % over 67% % over 75% % over 90%

No All 1.32 1.36 2.36 2.46 2.38
No Bookers 1.38 1.43 2.48 2.59 2.50
Yes All 1.16 1.19 1.37 1.33 1.26
Yes Bookers 1.23 1.27 1.54 1.49 1.37

Table H.5 Independent results of the fee meta-experiment (nights booked and gross guest spend)

Dependent variable:

Nights booked Gross guest spend
Individual-level randomized Cluster randomized Individual-level randomized Cluster randomized

(1) (2) (3) (4)

Treatment −1.340∗∗∗ −1.117∗∗∗ −130.021∗∗∗ −115.442∗∗∗

(0.084) (0.064) (11.164) (9.230)

Pre-treatment bookings 0.293∗∗∗ 0.298∗∗∗ 24.754∗∗∗ 24.742∗∗∗

(0.005) (0.003) (0.558) (0.466)

Pre-treatment nights booked 0.035∗∗∗ 0.034∗∗∗ −4.788∗∗∗ −4.265∗∗∗

(0.002) (0.001) (0.230) (0.154)

Pre-treatment gross guest spend −0.000∗∗ −0.000∗ 0.102∗∗∗ 0.098∗∗∗

(0.000) (0.000) (0.003) (0.002)

Pre-treatment nights available 0.013∗∗∗ 0.010∗∗∗ 1.563∗∗∗ 1.116∗∗∗

(0.002) (0.001) (0.210) (0.090)

Pre-treatment searches/night 1.334∗∗∗ 0.152∗∗ 231.887∗∗∗ 29.231∗∗

(0.160) (0.068) (29.159) (12.818)

Stratum F.E. Yes Yes Yes Yes
Robust s.e. Yes Yes Yes Yes
Clustered s.e. No Yes No Yes
R2 0.110 0.111 0.167 0.167
Adjusted R2 0.109 0.110 0.165 0.166

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table H.6 Results of the fee meta-experiment (nights booked and gross guest spend)

Dependent variable:
Nights booked Gross guest spend

(1) (2)
Treatment −1.136∗∗∗ −116.667∗∗∗

(0.064) (9.163)

Individual-level Randomized 0.138∗ 19.602∗

(0.079) (10.593)

Individual-level Randomized × Treatment −0.205∗ −12.931
(0.105) (14.384)

Pre-treatment bookings 0.297∗∗∗ 24.769∗∗∗

(0.003) (0.376)

Pre-treatment nights booked 0.035∗∗∗ −4.407∗∗∗

(0.001) (0.129)

Pre-treatment gross guest spend −0.000∗∗ 0.100∗∗∗

(0.000) (0.001)

Pre-treatment nights available 0.011∗∗∗ 1.174∗∗∗

(0.001) (0.082)

Pre-treatment searches/night 0.230∗∗ 42.669∗∗

(0.093) (17.007)

Stratum F.E. Yes Yes
Robust s.e. Yes Yes
Semi-clustered s.e. Yes Yes
R2 0.110 0.166
Adjusted R2 0.110 0.166

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table H.7 Independent results of the fee meta-experiment (simple specification)

Dependent variable: Bookings
Individual-level randomized Cluster randomized

(1) (2)
Treatment −0.343∗∗∗ −0.291∗∗∗

(0.017) (0.058)

Constant 2.578∗∗∗ 2.520∗∗∗

(0.013) (0.043)

Clustered s.e. No Yes
R2 0.001 0.000
Adjusted R2 0.001 0.000

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table H.8 Results of the fee meta-experiment (simple specification)

Dependent variable:
Bookings Nights booked Gross guest spend

(1) (2) (3)
Treatment −0.291∗∗∗ −1.261∗∗∗ −123.942∗∗∗

(0.058) (0.195) (36.306)

Individual-level Randomized 0.058 0.182 28.039
(0.045) (0.162) (28.211)

Individual-level Randomized × Treatment −0.052 −0.080 −3.427
(0.060) (0.214) (38.309)

Constant 2.520∗∗∗ 9.517∗∗∗ 1,215.845∗∗∗

(0.043) (0.148) (26.830)

Semi-clustered s.e. Yes Yes Yes
R2 0.001 0.000 0.000
Adjusted R2 0.001 0.000 0.000

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01



Holtz et al.: Reducing Interference Bias in Online Marketplace Experiments using Cluster Randomization
57

Table H.9 Treatment effect heterogeneity for the fee meta-experiment (interacted)

Dependent variable:

Bookings
Supply/demand-constrained Cluster quality

(1) (2)

Treatment −0.092∗∗∗ −0.349∗∗∗

(0.005) (0.018)

Individual-level Randomized 0.009 0.032
(0.005) (0.021)

Individual-level Randomized × Treatment −0.021∗∗∗ −0.076∗∗∗

(0.007) (0.027)

Demand-constrained −0.073∗∗∗

(0.004)

High-quality cluster −0.040∗∗

(0.018)

Pre-treatment bookings 0.175∗∗∗ 0.175∗∗∗

(0.001) (0.001)

Pre-treatment nights booked −0.003∗∗∗ −0.003∗∗∗

(0.000) (0.000)

Pre-treatment gross guest spend −0.000∗∗∗ −0.000∗∗∗

(0.000) (0.000)

Pre-treatment nights available 0.000∗∗∗ 0.001∗∗∗

(0.000) (0.000)

Pre-treatment searches/night 0.005∗∗ 0.051∗∗

(0.002) (0.020)

Individual-level randomized × Demand-constrained −0.010∗

(0.006)

Treatment × Demand-constrained 0.055∗∗∗

(0.005)

Individual-level Randomized × Treatment × Demand-constrained 0.013
(0.008)

Individual-level randomized × High-quality cluster −0.024
(0.028)

Treatment × High-quality cluster 0.142∗∗∗

(0.024)

Individual-level Randomized × Treatment × High-quality cluster 0.018
(0.035)

Stratum F.E. Yes Yes
Robust s.e. Yes Yes
Clustered s.e. Yes Yes
R2 0.405 0.405
Adjusted R2 0.405 0.405

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table H.10 Treatment effect heterogeneity for the fee meta-experiment w.r.t. cluster quality

(attribute-based definition)

Dependent variable:

Bookings
Low-quality clusters (attributes) High-quality clusters (attributes)

(1) (2)

Treatment −0.312∗∗∗ −0.231∗∗∗

(0.016) (0.017)

Individual-level Randomized 0.010 0.033
(0.019) (0.020)

Individual-level Randomized × Treatment −0.052∗∗ −0.092∗∗∗

(0.024) (0.026)

Pre-treatment bookings 0.173∗∗∗ 0.176∗∗∗

(0.001) (0.001)

Pre-treatment nights booked −0.002∗∗∗ −0.003∗∗∗

(0.000) (0.000)

Pre-treatment gross guest spend −0.000∗∗∗ −0.000∗∗∗

(0.000) (0.000)

Pre-treatment nights available 0.002∗∗∗ 0.002∗∗∗

(0.000) (0.000)

Pre-treatment searches/night 0.199∗∗∗ 0.035∗

(0.022) (0.018)

Stratum F.E. Yes Yes
Robust s.e. Yes Yes
Clustered s.e. Yes Yes
R2 0.405 0.406
Adjusted R2 0.405 0.406

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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